Congruences for sums of binomial coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for Sums of Binomial Coefficients

Let m > 0 and q > 1 be relatively prime integers. We find an explicit period ν m (q) such that for any integers n 0 and r we have n + ν m (q) r m (a) ≡ n r m (a) (mod q), provided that a = −1 and n = 0, or a is an integer with 1 − (−a) m relatively prime to q, where n r m (a) = k≡r (mod m) n k a k. This is a further extension of a congruence of Glaisher.

متن کامل

Some Congruences Involving Binomial Coefficients

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that Tp−1 ≡ (p 3 ) 3p−1 (mod p), where the central trinomial coefficient Tn is the constant term in the expansion of (1 + x + x−1)n. We also prove three congruences modulo p conjectured by Sun, one of which is p−1 ∑ k=0 ( p− 1 k )( 2k k ) ((−1) − (−3)−k) ≡ (p 3 ) (3p−1 −...

متن کامل

New Congruences for Central Binomial Coefficients

Let p be a prime and let a be a positive integer. In this paper we determine ∑pa−1 k=0 ( 2k k+d ) /mk and ∑p−1 k=1 ( 2k k+d ) /(kmk−1) modulo p for all d = 0, . . . , pa, where m is any integer not divisible by p. For example, we show that if p 6= 2, 5 then p−1 ∑

متن کامل

On Some New Congruences for Binomial Coefficients

In this paper we establish some new congruences involving central binomial coefficients as well as Catalan numbers. Let p be a prime and let a be any positive integer. We determine ∑pa−1 k=0 ( 2k k+d ) mod p2 for d = 0, . . . , pa and ∑pa−1 k=0 ( 2k k+δ ) mod p3 for δ = 0, 1. We also show that

متن کامل

On Sums of Binomial Coefficients

In this paper we study recurrences concerning the combinatorial sum [n r ] m = ∑ k≡r (mod m) (n k ) and the alternate sum ∑ k≡r (mod m)(−1) (n k ) , where m > 0, n > 0 and r are integers. For example, we show that if n > m−1 then b(m−1)/2c ∑ i=0 (−1) (m− 1− i i )[n− 2i r − i ]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2007

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2007.01.002